10. References#
Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters. In OSDI'04: Sixth Symposium on Operating System Design and Implementation, 137–150. San Francisco, CA, 2004.
Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter optimization at scale. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, 1437–1446. PMLR, 2018.
Ian Foster. Designing and building parallel programs: concepts and tools for parallel software engineering. Addison-Wesley Longman Publishing Co., Inc., 1995.
Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A universal modular ACTOR formalism for artificial intelligence. In Proceedings of the 3rd International Joint Conference on Artificial Intelligence. Standford, CA, USA, August 20-23, 1973, 235–245. William Kaufmann, 1973.
Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and Koray Kavukcuoglu. Population Based Training of Neural Networks. November 2017. arXiv:1711.09846.
Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits. In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Research, 1238–1246. Atlanta, Georgia, USA, 2013. PMLR.
Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015.
Wes McKinney. Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter. O'Reilly Media, 2022.
Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi Mo, Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph, and Aditya Parameswaran. Towards scalable dataframe systems. Proceedings of the VLDB Endowment, 13(12):2033–2046, August 2020. doi:10.14778/3407790.3407807.
Devin Petersohn, Dixin Tang, Rehan Durrani, Areg Melik-Adamyan, Joseph E. Gonzalez, Anthony D. Joseph, and Aditya G. Parameswaran. Flexible rule-based decomposition and metadata independence in modin: a parallel dataframe system. Proceedings of the VLDB Endowment, 15(3):739–751, November 2021. doi:10.14778/3494124.3494152.
Colin Shearer. The CRISP-DM model: the new blueprint for data mining. Journal of data warehousing, 5(4):13–22, 2000.
Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep Learning. Cambridge University Press, 2023. https://D2L.ai.